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Abstract

The upcoming workshop Image Analysis and Understanding Data from Sci-
entific Exzperiments at Los Alamos National Laboratory has two primary goals:
to familiarize leading members of the image analysis community with problems
of interest at LANL, and to introduce LANL scientists, many of whom have
little expertise in image analysis, to some of the important tools and cutting
edge developments in the analysis of image data.

These notes are intended to give examples of experimental data of interest,
introduce some of the current techniques, and present our views and perspec-
tives. We include three appendices covering a little more detail on the mathe-
matical methods of image analysis, an annotated bibliography with links, and
a discussion of a viewpoint which we believe is critical for the best results in
the analysis of scientific data.
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1 Introduction

The upcoming workshop Image Analysis and Understanding Data from Scientific Experi-
ments at Los Alamos National Laboratory has two primary goals: to familiarize leading
members of the image analysis community with problems of interest at LANL, and to in-
troduce LANL scientists, many of whom have little expertise in image analysis, to some of
the important tools and cutting edge developments in the analysis of image data.

We have written these notes in order to facilitate and inspire staff members with an
interest in or need for image analysis tools. We show a few examples of data and techniques,
explain our high level views and perspectives, and provide references and links to pertinent
documents and Internet sites.

While the workshop has as its goal the use of image analysis techniques for the under-
standing of scientific data, (and there is certainly current research focused on this goal) we
believe that other, apparently unrelated, research areas in image analysis are also potentially
useful in pursuit of this goal.

2 Data and Problems of Interest at LANL

Here we give an idea of the experimental data of interest by briefly presenting a few examples.
It should be kept in mind that this is really just the tip of the iceberg.

Proton radiography of high explosive experiments The data is generated by an op-
erator that can be well approximated (after some preprocessing of the data) by a
linear operator with a very large null space (many different objects give identical
measurements). There are also noise and systematic errors, and the final goal is the
understanding, on the basis of the data measured, of some physical quantity which is
far from directly observable in the measured radiographic images.

Code validation with image data from shocked gas curtains In this case one has
videos of fluid (a gas) evolving due to a shock wave hitting a gas curtain. The gas
is illuminated by a “sheet” of laser light. The data is of high enough resolution to
permit detailed comparisons with code.

Validation of thin film fluid equations from interferometric images In the exper-
iments, a very thin fluid layer is driven up an inclined plane by a thermal gradient.
The rates are on the order of mm/hour, and the evolution of the thickness of the film



and the location of edges are measured interferometrically. The goal is the valida-
tion of computational models for thin film dynamics.(See Andrea Bertozzi’s link in
Section B.2 below.)

Identification of objects in hyperspectral satellite imagery Satellite and airborne
sensors of increasing sophistication are providing images of increasing resolution, and
with larger numbers of spectral bands. The ability to detect and identify spectral
signatures and identify shapes in conjunction with those signatures has created many
interested customers in this kind of inference from images. Examples include detec-
tion of plumes, identification of plume content, and detection of vehicle types and
numbers from space.

Recognition of large dense objects or voids in the same Using background muon ra-
diation, we may form tomographic radiographs by accumulating individual muon
paths. These muon radiographs are then used to probe for abnormally density levels.

Recognition of faces in 2D images under varying poses Face recognition algorithms
currently achieve greatly varying rates of recognition, depending, for the most part,
on the the control of factors such as pose, lighting, and facial expression. The data
has high enough dimensionality that some care with computational issues is required.
While an enormous amount of work has been put into this area, we are a long way
from any sort of definitive solution.

The brief, far from exhaustive list above begins to give an idea of the diversity of
experiments, data, and questions leading to image analysis problems in which the goal s
not the reconstruction of an image that is pleasing to the eye.

3 Examples of Current Techniques

Current techniques on the cutting edge include:

e Variational methods and PDE methods: total variation, active contours, level set
methods, anisotropic diffusion, etc. Very briefly (see Section A.1) these methods
allow the use of powerful insights and computational techniques well established for
other purposes, which when brought to bear upon the image analysis tasks are found
quite powerful.



e Markov random fields (Gibbs fields) and their extensions/generalizations: FRAME,
Hierarchical MRF’s, multiscale MRF’s. These methods allow principled stochastic
modeling of images whereby one often ends up with a maximum a posteriori solution.

e Multiresolution/wavelet methods and the use of custom basis methods which implic-
itly model noise, deal with nonlocality, and exploit efficient representation methods.

Recommended for the breadth of topics breezed through are the slides from a talk by
Jackie Shen:

http: // www.math.umn.edu/~jhshen/ Venus/ Mich Tour.pdf

We give more detail on the above techniques in Section A below. More thorough references
and links are given there.

We close this section with examples of a few of the techniques of interest through the
use of links to sites with pictures, movies, demos, etc.

Inpainting A Science article and some nice demos:

http: // www.sciencenews.org/ 20020511/ bob10.asp
http: // mountains.ece.umn.edu/~ guille/ inpainting. htm
hitp: // www.ece.umn.edu/ users/ marcelo/ restoration.html

Total variation regularization Denoising results can be quite impressive:

http: // www.math.ucla.edu/~imagers/ htmls/ rec.html

Level set methods The method introduced by Osher and Sethian with great success:
http: // math.berkeley.edu/~ sethian/ level _set.html
http: // www.math.ucla.edu/~imagers/ htmls/ lev.html
Active contours Originally introduced by Kass-Witkin-Terzopoulos:
http: // www-sop.inria.fr/ robotvis/ const/ra/ 00/ SuiviLS/
http: // www.markschulze.net/ snakes/

Dimension reduction PCA, POD, EOF, KH, and nonlinear generalizations, here we
show that even PCA introduced early in the last century, is not dead:

http: // www-white.media.mit.edu/ vismod/ demos/ facerec/ basic.html
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Wavelet Methods Wavelet methods having to do with images are extraordinarily numer-
ous. Here are a couple of nice examples and an irresistible demo on 1-D wavelets.

http: // www-dsp.rice.edu/ software/ whmt.shtml hitp: // www-dsp.rice.edu/ software/ ward.

shtml http:// cm.bell-labs.com/ cm/ms/who/wim/ cascade/ math.html

Stochastic Modeling Most of these examples deal with Markov random fields:

http: // www.utia.cas.cz/ user_data/ haindl/ virtuous/ dema/ demtexsyn.html
http: // www.ercim.org/ publication/ Ercim_News/ enw44/ haindl2.html

http: // www.utia.cas.cz/ user_data/ haindl/ virtuous/ dema/ dema.html
http: // www.iro.umontreal.ca/~mignotte/ postdoc.html

http: // www.wi.leidenuniv.nl/home/ lim/ face.detection.html

http: // rfv.insa-lyon.fr/~wolf/

Other In color images, correlations can be exploited:

http: // www-sop.inria.fr/ robotvis/ personnel/ David. Tschumperle/ demos/ color _restoration/

4 The Importance of Context

In the following section we argue that the complete context of an image is important when
thinking about images and the information they represent. In particular, we argue that the
whole flow of information from object to the perception/measurement, through the cogni-
tion/inference should be kept in mind when attempting to understand images.

What is an image? Here are typical definitions which, when taken as the domain of
discussion for image analysis, are unnecessarily limiting in focus and scope:

Function: An image is a function z = i(z, y) from the unit square, [0, 1] x [0, 1] to the unit
interval [0, 1].

Measurement: An image is a vector of length nm (or an n x m matrix) each entry of the
vector being an 8, 12 or 16 bit binary number, etc.

Perception: An image is what I see with my eyes (this is particularly difficult to work
with).

Images are important or interesting because they are measurements of something —
typically 3-dimensional, and often dynamic — and so one should be thinking of the object,
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the measurement, and the interpretation instead of merely, for example, a vector of gray
levels.

Thinking about measurements and how they arise leads us to a sequence of components:
a possibly dynamic object that emits and/or reflects light, a medium that transmits and
transforms that light, a recording system which reduces something infinite dimensional to
a finite dimensional measurement, the presence of “noise” (making the whole process much
more interesting and challenging) and finally, the perceiver/interpreter of the measurement,
typically with a narrowly focused interest in the object which was measured in the image
or sequence of images.

Keeping this sequence of components and their relationships in mind permits the use of
the simpler definitions (e.g. an image is a vector) without the loss of depth risked by the
use of the simplifications.

We do this now and define an image to be an finite or infinite dimensional vector formed
through some (typically optical) measurement system, but with the more extensive definition
or context in mind, we consider the analysis of images to be divided somewhat naturally into
three parts:

Part 1 Image Formation (Object = Image)
Part 2 Traditional Image Analysis (Image = Image)

Part 3 Image Understanding (Image = Semantic/Scientific Information)

One might argue that much of what falls under (2) above is actually very low level
image understanding and that (2) and (3) are different only in degree, not quality. In our
opinion, that this is not very useful. In fact, though (2) and (3) are very tightly coupled, it
is still the case that segmentation or texture analysis is quite different than recognition of
faces or the inference of elastic parameters from measured experimental images. But it is
certainly the case that both (1) and (2) are closely involved in the pursuit of (3).



Appendices

A Image Analysis Tools: a Few More Details
In image analysis, there are three main approaches.

e The task may be formulated as a PDE or variational problem, the solution of which
is the corresponding restored, segmented, denoised, etc. image. One can combine
these techniques with multiresolution or hierarchical approaches to get an end result
that moves closer to the image understanding end of things.

e The use of various multiresolution wavelet or wavelet-like representations to accom-
plish denoising, efficient modeling of images and their statistics (enabling e.g. more
efficient object recognition).

e Stochastic methods handle noise naturally, yield estimates with explicit uncertainty
quantification, and permit the flexible incorporation of prior information into image
models. In this unbelievably brief glance, we will focus on a particularly successful
method, that of Markov random field modeling.

Each of these approaches has something to teach us about images and the modeling
of images. It seems likely that we will see more and more ties between these different
approaches as each, in isolation, meets its limitations.

A.1 PDE and variational methods

The use of PDE and variational methods in image analysis has grown from a number of
contributions in the 1980s and early 1990s (see for example Mumford-Shah [15, 16], Perona-
Malik [19], Osher-Sethian [17], Rudin-Osher-Fatemi [20], Kass-Witkin-Terzopoulos [11]).
Since then work in this area has exploded as experts in PDEs and variational methods have
discovered image analysis and its rich source of inspiration and applications.

At the most basic level, the methods are based on one of two equation types:

up = F(u) (1)

4 = argmin G(u) (2)

u



where Equation 1 is an evolution equation in which the image w is evolving in time according
to the PDE determined by the operator F', and Equation 2 tells us that the desired image
u is in fact an optimal solution of the functional G. In the case of a time evolving PDE
for an image u, we expect that the asymptotic solution is the “desired” restored, denoised,
etc. image. A method of solution for the variational equation (Equation 2) is the method
of time marching or gradient descent whereby one simply sets the negative functional or
Frechet derivative of G(u), —DF(u), equal to u; and letting this PDE evolve to the minimal
point of F*:

ur = —DF(u). (3)

(There are details: this method of solution is implicitly using the Riesz representation
theorem to place u; and DF(u) in the same space.)

Before going to a specific list of methods we give a couple of links to papers by Chan,
Shen, and Vese as well as a paper by Osher which goes into depth on important parts of
the PDE /variational method spectrum:

e http: // www.math.ucla.edu/~imagers/ htmls/ internalreport/ notice.ps
o ftp:// ftp.math.ucla.edu/ pub/ camreport/ cam02-43.ps.gz

More specifically now, a number of methods whose various modifications and general-
izations covers a great deal of ground in the PDE /variational world, are mentioned.

Inpainting In this image analysis enterprise one is attempting to restore images with
missing pieces, scratches, etc. This is done in various ways by using the boundary
information together with some regularization. One of the more interesting ways
is the method which mimics fluid equations to “flow” the boundary data into the
void. See the hitp: //www.ece.umn.edu/ users/ marcelo/ restoration.html for a nice
demonstration of inpainting. The webpage at UCLA (http: // www.math.ucla.edu/
~imagers/ htmls/inp.html) is also worth looking at.

Level set methods In this method curves in 2-D or surfaces in 3-D are thought of as
level sets of functions f : R? — R or f: R® — R respectively. This has many advan-
tages including: the PDEs governing curve or surface evolution are well behaved and
changing topology of a curve or surface under evolution presents no special problems.
The method, introduced by Osher and Sethian in 1988 [17] has been enormously suc-
cessful: a Google search for level set method(s) yields a combined total of over 5700
hits!
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Total variation minimization In total variation minimization [20] the image is denoised
by minimizing the total variation [ |V f| dzdy under the constraint that the resultant
restored image u(z,y) is not too far (distance used to define too far usually the Lo
norm) from the measured, noisy image. In some cases the results are quite remarkable.

Mumford-Shah The Mumford-Shah functional [15, 16] minimizes the distance to data
plus the amount of non-smoothness (not including the discontinuities) plus the length
of the curves of discontinuities. The underlying theory is very beautiful as well as
quite involved (see Ambrosio, Fusco, and Pallara).

Snakes, active contours, and geodesic flows Introduced in 1987, the Kass-Witkin--
Terzopoulos model [11], in essence looks for a curve with minimal length, minimal
curvature and which lies on an edge (image gray level discontinuity). This technique
is used, for example, to find object edges in images.

The heat equation and more complicated cousins Denoising can be achieved via smooth-
ing induced by an operator which uses the noisy image as initial data and simply
“runs” the heat equation for some time. The loss of edge resolution is usually un-
acceptable and so one is lead to an approach introduced by Perona and Malik [19]
in which the diffusion is anisotropic. In particular, the edges are much more nearly
preserved. This method has a close relation to robust statistical estimation in which
(very roughly) one uses only similar neighboring pixel values to compute the smooth-
ing average.

A.2 Wavelets and other representations

Wavelet decompositions have, within the previous decade, become part of the standard
mathematical toolbox for signal and image processing. The most significant success has
been achieved in the field of image compression, where discrete wavelet transform based
techniques such as EZW, SPIHT, and the recent JPEG2000 [25] standard offer considerable
advantages over methods, such as the earlier JPEG standard, based on discrete Fourier
and related transforms. Significant success has also been achieved in image denoising,
where wavelet based techniques offer some of the most successful approaches. The range
of applications is far more diverse, of course, including image watermarking, content-based
retrieval, various pattern recognition tasks, stereo matching, and image fusion, to name a
few.

In addition to wavelets, mention should be made of various adaptive transform strate-
gies (some of which operate on overcomplete wavelet packet dictionaries) such as matching
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pursuit and basis pursuit, and the recent “beamlet”, “ridgelet”, and “curvelet” [23] decom-
positions developed by Donoho and collaborators.

A.3 Stochastic methods

The use of Markov random fields (MRF's) to model images was introduced in 1984 by Geman
and Geman [7]. It is probably fair to say that MRF modeling and related techniques and
extensions are the dominant influence in the stochastic modeling of images. This dominance
is indicated by the more than 2400 citations of Geman and Geman.

Very roughly, a Markov Random Field is a spatial field of sites i (think of pixels) which
are assigned labels [(7) (think of gray levels) according to a probability distribution having
the property that for any site 1,

P(l(i) = « | all other sites) = P(I(i) = a|neighboring sites of 7). (4)

One can introduce prior knowledge through the specification of a neighborhood of influence
for each site and the conditional distributions (P(l(i) = «a|neighboring sites of 7)). The
theorem of Hammersley and Clifford [9] (see also Besag [3]) showing that one may indeed
specify the consistent conditional distributions via Gibbs potentials makes the specification
of a MRF practical. (Another result (Griffeath [3]) permits the calculation of canonical
potentials, which is of interest due to the non-uniqueness of potential functions — different
potentials give rise to the same probability distribution.) One can build hierarchical and
multiresolution MRF models, which permits, for example, the coupling of non-local effects
into the neighborhoods.

An interesting extension and improvement to the MRF model is the FRAME model
proposed by Zhu, Wu and Mumford in 1997 [36, 34, 35]. In this model, they use a sequence
of filters to permit neighborhood influences which are more general than the usual ones,
and in detail permit the constraints to be formulated in terms of matching statistics of
training data but otherwise permitting maximum uncertainty in the probability model.
More explicitly, one maximizes entropy under the constraint that the expected histograms
of the outputs of a sequence of filters matches the corresponding average histograms from
an ensemble of training data, one average histogram for each filter.

The key idea to the MRF model and its extensions is that one can build a consistent
model for an image with embedded constraints in such a way that either Maximum Like-
lihood or, after selection of an appropriate prior, maximum a posteriori, can be applied to
recover various estimates, restorations, and the like given the appropriate MRF model.

This leads to some challenging optimization problems which, after formulation of the
correct model (i.e. one that correctly and consistent formalizes the constraints), are the
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main task to be pursued in MRF modeling of images.
One can find much more about MRF modeling and its extensions by looking at Kinder-
mann and Snell [12] and Stan Z. Li [13].

B Annotated Bibliography and Links

The following annotated bibliography and list of links to groups doing exciting research is
intended to provide some assistance in the significant effort required to familiarize oneself
with a new research field.

B.1 Annotated bibliography

For an introduction to PDE and variational approaches to image analysis (and to a lesser ex-
tent image understanding) see the books by Osher and Fedkiw [18], Sapiro [21], Sethian [22],
and Aubert and Kornprobst [2]. There is also the nice new book by Curt Vogel [26] which in-
cludes significant material relevant to the image formation problem. Stan Z. Li’s book [13]
on Markov Random Field modeling of images is the best monograph on this approach
(which is probably the most established of the stochastic approaches to image analysis).
As a companion to Li’s book, we would highly recommend Kindermann and Snell [12].
More traditional image processing can be found, for example, in Jain’s classic book [10].
For Wavelets, the best introductory references include those by Mallat [14] and Strang and
Nguyen [24].

As a companion to the above books we would recommend Craig Evan’s beautiful book
on PDEs [5], Ziedler’s books on applied and nonlinear functional analysis [32, 33, 29, 27,

, 28, 30], Evans and Gariepy [0], and Ekeland and Temam [1].

Last, but not least, there is the wonderful book of Ambrosio, Fusco, and Pallara [1]
which will be more than most need or desire, but is very highly recommended for those
with a (some might say perverse) fascination with geometric measure theory.

B.2 Research groups and links

There are a multitude of investigators in image formation, image analysis, and image under-
standing. A list, by no means exhaustive, of significant investigators and research groups is
given below.

UCLA The imaging group lead by Chan and Osher at UCLA has been very productive,
especially in the area of PDE and variational methods for images. They also maintain
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a very nice library of reports which can be accessed at the following link:
http: // www.math.ucla.edu/~imagers/

The entire collection of UCLA CAM reports includes work that is not image related,
but is kept up to date better than the image groups list can be found at the following
link:

hitp: // www.math.ucla.edu/ applied/ cam/ index.html

We also include a link to the UCLA vision lab run by Stefano Soatto:

http: // www.vision.cs.ucla.edu/

Minnesota There is a growing effort at University of Minnesota spearheaded by Sapiro,
Tannenbaum, Olver, and Shen, each of whose web pages follow:
http: // www.ece.umn.edu/ users/ guille/
http: // www.ece.umn.edu/ users/ tannenba/
http: // www.math.umn.edu/~ olver/
http: // www.math.umn.edu/~jhshen/

Brown There are a number of notables in image analysis and pattern recognition at brown
university including Mumford, Grenander, and one of the Geman brothers (Stuart).
The list can be accessed through the pattern theory groups web page:

http: // www.dam.brown.edu/ ptg/

The other Geman (Donald) can also be accessed through the Brown site, but is at U
Mass, Amherst and Johns Hopkins.

Caltech Perona’s group at Caltech can be accessed through the following link:

http: // www.vision. caltech.edu/ .index.html

Carnegie Mellon Two webpages of interest at Carnegie of interest are the CIL (Calibrated
Imaging Lab) webpage and the Computer Vision webpage:

hitp: // www-2.cs.cmu.edu/~cil/
http: // www-2.cs.cmu.edu/ ™~ cil/ vision. html

Duke Andrea Bertozzi’s group does research in image analysis as well as other areas such
as microfluidics and swarming. Andrea and her collaborators are the source for the
microfluidic data mentioned above. Included below is a link to her webpage and
to an article in Science News Online concerning inpainting (also featured are the
investigators Jackie Shen, Tony Chan, Guillermo Sapiro, and Marcelo Bertalmio):
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http: // www.math. duke.edu/~bertozzi/
hitp: // www.sciencenews.org/ 20020511/ bob10.asp

Yale Steven Zucker, who recently has recently become chairman of the Electrical Engineer-
ing Department at Yale, has a group working on early vision, grouping, and generic
shape analysis. Below are his link (see his link “research”) and a link to the Center
for Computational Vision and Control:

http: // www.cs.yale.edu/~vision/ zucker/ steve.html
http: // cve.yale.edu/ frames.html

Courant Institute Eero Simoncelli works on various aspects of images including the sta-
tistical properties of natural images, visual motion and representation. His webpage
has more details:

http: // www.cns.nyu.edu/~eero/

SIAM Imaging Science Activity Group SIAM recently started another of the STAM
Activity Groups, this one in Imaging Science. The group organized a very successful
conference in Boston in last spring (March 2002). Their links are as follows:

http: // www.siam.org/ siags/ siagis.htm
http: // www.math.ufl.edu/~bam/ siagis/

There are many more See the the other links on the UCLA Imager’s webpage as well
as the growing list of links on the STAM Imaging Science webpage.

C The Science Picture

Last, but certainly not least, we include a picture of the scientific enterprise that we believe
is often missing from the perceptual framework of many investigators. We believe that this
often leads to less than optimal results.

C.1 Representation, inversion, dynamics and metrics

Science attempts to provide a clearer picture of the world through a combination of modeling
and experimentation. The goal of this enterprise is to understand, in as simple a manner
as possible, the phenomena that are observable. This goal takes the form of the ability
to control (think of jet aircraft, missile systems, and cures for diseases), to predict (think
of the stock market and the weather), and to simplify to enable the understanding of yet
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more complex phenomena (think of the revolution brought about by Newton’s work and
the quantum mechanical work in the 20th century).

Science begins with observations, and through these observations one is inspired to
take measurements of a phenomena which is very often modeled as a point in some finite
or infinite dimensional state space undergoing temporal evolution governed by some set
of principles/laws/equations. Recovering the state and/or the laws of evolution from a
parameterized class, rejecting some hypothesis for the appropriate state space or governing
equation, or inferring some unmeasured quantity from the measured ones captures a large
number of the uses of scientific experiments and the data they represent.

To be able to arrive in the end at a defensible inference about the model/reality complex,
one needs to have a consistent method for moving from data back to the model. This involves
the following pieces which are often not given sufficient consideration.

Representation The object (state) and measurement spaces can be represented in many
ways, all of which look equivalent until something practical, like computation or
observation, is attempted. Practical efforts require truncations in expansions and the
implied choice among possible finite dimensional approximations. Sometimes we are
lucky enough to have a natural basis, distinguished by highly efficient representation
(truncates well) , but usually we at least begin with something far from optimal. In
addition to efficiency issues, the choice of representation can be used to implicitly
ignore noise and invariances which one wants to factor out. Unfortunately, choice of
representation is often left to whatever occurs first to the investigator, whatever was
done before, or is easiest.

Inverse operator The analysis of scientific data (including image data) almost always
involves inverse problems; the following therefore represent critical components in
the generation of inferences from data:

e the inverse problem,
e its sensitivities,
e its null space or level sets (if they are nontrivial),
e the improvements possible through reparameterization, and
e the possibility for principled regularization.
Dynamics It is almost always the case that data is not time invariant, that is, there is

variation in the temporal direction. In this case, we may use prior knowledge or
hypotheses about the dynamics or class of dynamics to link data taken at different
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times together, effectively increasing the inferential power of the data. Parameter
estimation such as Kalman filtering is just one example of this.

Metrics (and uncertainties) Finally, the comparison that generates an inference is of-
ten in the form of a metric which, far too often, is simply the “viewgraph norm”
rather than some principled metric built through an understanding of the inverse,
representation, and dynamics problems.

This brings us to the question of uncertainties.

C.2 Quantitative results and uncertainties

Understanding the representation, inverse, and dynamic problems helps us generate a metric
which can be used to generate an inference. In some cases one can simply use the model to
propagate the uncertainties forwards and/or backwards, possibly adding other uncertainties
at the appropriate point in the flow of information. In other cases, one needs to rethink
the equations of motion, perhaps using stochastic laws of evolution. The basic framework,
though, remains the same — all the same issues must be dealt with. In both cases the final
result might be a probability distribution over the state space, or an a posteriori distribution
over the parameters of some model-class of dynamics given the data.

In the completely stochastic framework with stochastic states, dynamics, and measure-
ments, the computations can be much more involved. Instead of moving points around some
space X (often infinite dimensional), we must propagate functions (or measures) defined
on X, around the space of such functions or measures. (Even the simpler case of involving
deterministic dynamics to propagate uncertainty around is really moving a function forward
rather than simply a point, but this task can actually be fairly straightforward.)

In the end, one must not ignore the uncertainties. The way the uncertainties are dealt
with in the production of an inference needs to be thought about very carefully. We do not
believe that there is some all encompassing way to do this, but we certainly advocate that
the process be clear about assumptions and transparent in design.
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